MTH 201 Multivariable calculus and differential equations Homework 7 ntegrals and change of variables for double and triple in

Triple integrals and change of variables for double and triple integrals

Triple integrals

- 1. Evaluate each of the following triple integrals
 - (a) $\iiint_R (x+y+z) \, dV$, where $R = [0,4] \times [0,3] \times [0,2]$.
 - (b) $\iiint_R x \, dV$, where R is the region in the space bounded by x = 0, y = 0, z = 2, and the surface $z = x^2 + y^2$.
 - (c) $\iiint_R 2x \, dV$, where R is the region under the plane 2x + 3y + z = 6 that lies in the first octant (the first octant is the octant in which all three co-ordinates are positive).
 - (d) $\iiint_R(\sqrt{x^2+z^2}) \, dV$, where R is the region bounded by $y = x^2 + z^2$ and the plane y = 4.
 - (e) $\iiint_R 2x \, dV$, where R is the solid tetrahedron bounded by four planes x = 0, y = 0, z = 0, and x + y + 2z = 4.
- 2. Compute $\iiint_R xz \, dV$, where R is the solid tetrahedron with vertices (0, 0, 0), (1, 1, 0), (0, 1, 0), and (0, 1, 1).
- 3. Compute $\iiint_R x^2 e^y \, dV$, where R is the region below the parabolic cylinder $z = 1 y^2$ and above the square $[-1, 1] \times [-1, 1]$ in the xy-plane.

Change of variables for double integrals

- 4. Determine the region that we get by applying the given transformation to the region D
 - (a) D is the ellipse $x^2 + \frac{y^2}{36} = 1$ and the transformation is x = u/2, y = 3v.
 - (b) D is the region bounded by y = -x + 4, y = x + 1, and y = x/3 4/3 and the transformation is x = (u + v)/2, y = (u v)/2.
- 5. Evaluate the double integral $\iint_D e^{\frac{x+y}{x-y}} dA$, where D is the trapezoidal region with vertices (1,0), (2,0), (0,-2), and (0,-1).
- 6. Evaluate the double integral $\iint_D (x + y) dA$, where D is the trapezoidal region with vertices (0,0), (5,0), (5/2, 5/2), and (5/2, -5/2).
- 7. Evaluate $\iint_D (x^2 xy + y^2) dA$, where D is the ellipse $x^2 xy + y^2 = 2$ by changing variables $x = \sqrt{2}u \sqrt{2/3}v$ and $y = \sqrt{2}u + \sqrt{2/3}v$.
- 8. Use change of variables $x = u^2 v^2$ and y = 2uv to evaluate the double integral $\iint_D y DA$, where D is the region bounded by the X-axis, the parabolas $y^2 = 4 4x$, $y^2 = 4 + 4x$, and $y \ge 0$.

Change of variables for triple integrals

9. (a) Convert the point $(-1, 1, \sqrt{2})$ from cartesian to cylindrical to spherical co-ordinates.

MTH 201 Homework 7 (Continued)

- (b) Convert the point $(\sqrt{6}, \pi/4, \sqrt{2})$ from cylindrical to spherical co-ordinates.
- 10. Use change of variables to evaluate each of the following triple integrals
 - (a) $\iiint_R (x^2 + y^2) \, dV$, where $R = \{(x, y, z) : -2 \le x \le 2, -\sqrt{4 x^2} \le y \le \sqrt{4 x^2}, \sqrt{x^2 + y^2} \le z \le 2\}$.
 - (b) $\iiint_R e^{(x^2+y^2+z^2)^{3/2}} dV$, where R is the unit ball $R = \{(x, y, z) : x^2 + y^2 + z^2 \le 1\}.$
 - (c) $\iiint_R 16z \ dV$, where R is the upper half of the unit ball $\{(x, y, z) : x^2 + y^2 + z^2 \le 1\}$.

(d)
$$\int_{x=0}^{3} \int_{y=0}^{\sqrt{9-y^2}} \int_{z=\sqrt{x^2+y^2}}^{\sqrt{18-x^2+y^2}} (x^2+y^2+z^2) dz dy dx.$$

- 11. Evaluate $\iiint_R y \, dV$, where R is the region that lies below the plane z = x + 2 above the xy-plane and between the cylinders $x^2 + y^2 = 1$ and $x^2 + y^2 = 4$.
- 12. Evaluate $\iint_R x^2 dV$, where R is the solid region that lies within the cylinder $x^2 + y^2 = 1$, above the plane z = 0, and below the cone $z^2 = 4(x^2 + y^2)$.
- 13. Use spherical co-ordinates to find the volume of the solid that lies above the cone $z = \sqrt{x^2 + y^2}$ and below the sphere $x^2 + y^2 + z^2 = z$.