Multivariable calculus and differential equations
 Homework 7

Triple integrals and change of variables for double and triple integrals

Triple integrals

1. Evaluate each of the following triple integrals
(a) $\iiint_{R}(x+y+z) d V$, where $R=[0,4] \times[0,3] \times[0,2]$.
(b) $\iiint_{R} x d V$, where R is the region in the space bounded by $x=0, y=0, z=2$, and the surface $z=x^{2}+y^{2}$.
(c) $\iiint_{R} 2 x d V$, where R is the region under the plane $2 x+3 y+z=6$ that lies in the first octant (the first octant is the octant in which all three co-ordinates are positive).
(d) $\iiint_{R}\left(\sqrt{x^{2}+z^{2}}\right) d V$, where R is the region bounded by $y=x^{2}+z^{2}$ and the plane $y=4$.
(e) $\iiint_{R} 2 x d V$, where R is the solid tetrahedron bounded by four planes $x=0, y=$ $0, z=0$, and $x+y+2 z=4$.
2. Compute $\iiint_{R} x z d V$, where R is the solid tetrahedron with vertices $(0,0,0),(1,1,0),(0,1,0)$, and $(0,1,1)$.
3. Compute $\iiint_{R} x^{2} e^{y} d V$, where R is the region below the parabolic cylinder $z=1-y^{2}$ and above the square $[-1,1] \times[-1,1]$ in the $x y$-plane.

Change of variables for double integrals

4. Determine the region that we get by applying the given transformation to the region D
(a) D is the ellipse $x^{2}+\frac{y^{2}}{36}=1$ and the transformation is $x=u / 2, y=3 v$.
(b) D is the region bounded by $y=-x+4, y=x+1$, and $y=x / 3-4 / 3$ and the transformation is $x=(u+v) / 2, y=(u-v) / 2$.
5. Evaluate the double integral $\iint_{D} e^{\frac{x+y}{x-y}} d A$, where D is the trapezoidal region with vertices $(1,0),(2,0),(0,-2)$, and $(0,-1)$.
6. Evaluate the double integral $\iint_{D}(x+y) d A$, where D is the trapezoidal region with vertices $(0,0),(5,0),(5 / 2,5 / 2)$, and $(5 / 2,-5 / 2)$.
7. Evaluate $\iint_{D}\left(x^{2}-x y+y^{2}\right) d A$, where D is the ellipse $x^{2}-x y+y^{2}=2$ by changing variables $x=\sqrt{2} u-\sqrt{2 / 3} v$ and $y=\sqrt{2} u+\sqrt{2 / 3} v$.
8. Use change of variables $x=u^{2}-v^{2}$ and $y=2 u v$ to evaluate the double integral $\iint_{D} y D A$, where D is the region bounded by the X-axis, the parabolas $y^{2}=4-4 x, y^{2}=4+4 x$, and $y \geq 0$.

Change of variables for triple integrals

9. (a) Convert the point $(-1,1, \sqrt{2})$ from cartesian to cylindrical to spherical co-ordinates.

MTH 201 Homework 7 (Continued)
(b) Convert the point $(\sqrt{6}, \pi / 4, \sqrt{2})$ from cylindrical to spherical co-ordinates.
10. Use change of variables to evaluate each of the following triple integrals
(a) $\iiint_{R}\left(x^{2}+y^{2}\right) d V$, where $R=\left\{(x, y, z):-2 \leq x \leq 2,-\sqrt{4-x^{2}} \leq y \leq \sqrt{4-x^{2}}, \sqrt{x^{2}+y^{2}} \leq\right.$ $z \leq 2\}$.
(b) $\iiint_{R} e^{\left(x^{2}+y^{2}+z^{2}\right)^{3 / 2}} d V$, where R is the unit ball $R=\left\{(x, y, z): x^{2}+y^{2}+z^{2} \leq 1\right\}$.
(c) $\iiint_{R} 16 z d V$, where R is the upper half of the unit ball $\left\{(x, y, z): x^{2}+y^{2}+z^{2} \leq 1\right\}$.
(d) $\int_{x=0}^{3} \int_{y=0}^{\sqrt{9-y^{2}}} \int_{z=\sqrt{x^{2}+y^{2}}}^{\sqrt{18-x^{2}+y^{2}}}\left(x^{2}+y^{2}+z^{2}\right) d z d y d x$.
11. Evaluate $\iiint_{R} y d V$, where R is the region that lies below the plane $z=x+2$ above the $x y$-plane and between the cylinders $x^{2}+y^{2}=1$ and $x^{2}+y^{2}=4$.
12. Evaluate $\iint_{R} x^{2} d V$, where R is the solid region that lies within the cylinder $x^{2}+y^{2}=1$, above the plane $z=0$, and below the cone $z^{2}=4\left(x^{2}+y^{2}\right)$.
13. Use spherical co-ordinates to find the volume of the solid that lies above the cone $z=$ $\sqrt{x^{2}+y^{2}}$ and below the sphere $x^{2}+y^{2}+z^{2}=z$.

